
Publication details
Publisher: Springer
Place: Berlin
Year: 2014
Pages: 31-55
Series: Signals and Communication Technology
ISBN (Hardback): 9783319053165
Full citation:
, "Geometry on positive definite matrices deformed by v-potentials and its submanifold structure", in: Geometric theory of information, Berlin, Springer, 2014


Geometry on positive definite matrices deformed by v-potentials and its submanifold structure
pp. 31-55
in: Frank Nielsen (ed), Geometric theory of information, Berlin, Springer, 2014Abstract
In this paper we investigate dually flat structure of the space of positive definite matrices induced by a class of convex functions called V-potentials, from a viewpoint of information geometry. It is proved that the geometry is invariant under special linear group actions and naturally introduces a foliated structure. Each leaf is proved to be a homogeneous statistical manifold with a negative constant curvature and enjoy a special decomposition property of canonically defined divergence. As an application to statistics, we finally give the correspondence between the obtained geometry on the space and the one on elliptical distributions induced from a certain Bregman divergence.
Publication details
Publisher: Springer
Place: Berlin
Year: 2014
Pages: 31-55
Series: Signals and Communication Technology
ISBN (Hardback): 9783319053165
Full citation:
, "Geometry on positive definite matrices deformed by v-potentials and its submanifold structure", in: Geometric theory of information, Berlin, Springer, 2014