Catalogue > Serials > Journal > Journal Issue > Journal article

Publication details

Publisher: Kimé

Place: Koeln

Year: 2005

Pages: 145-163

Series: Philosophia Scientiae

Full citation:

Alexander A. Zenkin, "Scientific intuition of genii against mytho-"logic' of Cantor's transfinite "paradise'", Philosophia Scientiae 9 (2), 2005, pp. 145-163.

Abstract

In the paper, a detailed analysis of some new logical aspects of Cantor’s diagonal proof of the uncountability of continuum is presented. For the first time, strict formal, axiomatic, and algorithmic definitions of the notions of potential and actual infinities are presented. It is shown that the actualization of infinite sets and sequences used in Cantor’s proof is a necessary, but hidden, condition of the proof. The explication of the necessary condition and its factual usage within the framework of Cantor’s proof makes , Cantor’s proof invalid. It’s shown that traditional Cantor’s proof has a second necessary, but hidden as well, condition which is teleological by its nature, i.e., is not mathematical. The explication of the second necessary condition makes Cantor’s statement on the uncountability of continuum unprovable from the point of view of classical logic.One of the most dramatic facts in history of science is connected just with the notion of actual infinity and consists in the following. On the one hand, Aristotle, Berkeley, Locke, Descartes, Spinoza, Gauss, Kant, Cauchy, Kronecker, Hermite, Poincaré, Bair, Borel, Brouwer, Quine, Wittgenstein, Weyl, Luzin, and a lot of other outstanding creators of classical logic and classical mathematics, during millenniums, stated categorically and insistently warned about that the actual infinity is a self-contradictory notion and its usage in mathematics is inadmissible (e.g., according to Poincare, “There is no actual infinity. - Cantorians forgot that and fell into contradictions. Later generations will regard Mengenlehre (set theory) as a disease from which one has recovered”). On the other hand, a lot of outstanding scientists of the XX c.c., such as Hilbert, Church, Turing, Gödel, etc., and modern axiomatic set theory as a whole ignored this (intuitive though) opinion of genii and accepted Cantor’s “transfinite paradise”, based on the actual infinity. In the paper some logical, philosophical, and psychological aspects of this historical “favorable opposition” are analyzed, and the fact that the scientific intuition of genii has won the historical battle against the mytho-’logic’ of Cantor’s transfinite ‘paradise’ is explained and logically justified.

Cited authors

Publication details

Publisher: Kimé

Place: Koeln

Year: 2005

Pages: 145-163

Series: Philosophia Scientiae

Full citation:

Alexander A. Zenkin, "Scientific intuition of genii against mytho-"logic' of Cantor's transfinite "paradise'", Philosophia Scientiae 9 (2), 2005, pp. 145-163.